

TEST / CALIBRATION REPORT

Type Test Report for MECO Frequency Transducer

Testing as per IEC 60688 (Edition 2.2)

ELECTRONICS REGIONAL TEST LABORATORY (WEST)

MINISTRY OF COMMUNICATIONS & INFORMATION TECHNOLOGY, (STQC Dte.)

Government of India

Plot No. F 7 & 8, MIDC Area, Opp.SEEPZ, Andheri (E), Mumbai-400 093. Phone : (022) 2832 5134, 2830 1468, 2830 1138 Fax : (022) 2822 5713 E-mail : ertlbom@bom4.vsnl.net.in

MEMORANDUM

The Test/Calibration Report issued by **ERTL (W)** is a record of the measurements conducted on the products submitted to it for testing / calibration and the results thereof. Unless otherwise specified in the report, the results are applicable only to those products which have been tested / calibrated and do not apply to other products even though declared to be identical.

This Report, if reproduced for any purpose-commercial or otherwise would be reproduced in full. Reproduction of a part of the report or an abstract thereof must be specifically approved from the **ERTL (W)**.

LIABILITY CLAUSE

- 1. **ERTL (W)** shall not be liable for any change in test / calibration data and performance specification on account of malfunctioning of the standard / instrument /equipment due to any damage caused to it after the report, in respect of it has been issued.
- 2. The report shall not be regarded in any way diminishing the normal contractual responsibilities / obligations between the customer and ERTL (W).
- 3. The result reported in this report are valid only at the time of and under the stated conditions of the measurements.

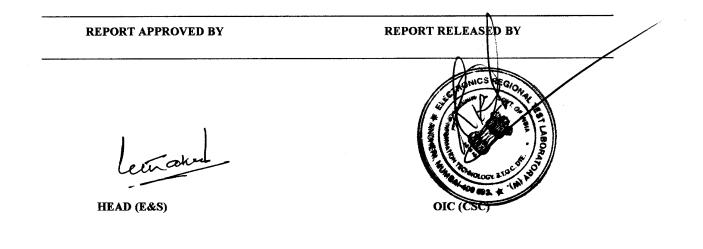
ELECTRONICS REGIONAL TEST LABORATORY (WEST) DEPARTMENT OF INFORMATION TECHNOLOGY	REPORT NO. ERTL (W)/2003 E&S	\$27
SUBJECT: TESTING OF FREQUENCY TRANSDUCER	- 9 MAY 2003	PAGE 1	OF 7

1. SCOPE

Service Request No		: ERTL(W)/2002	30563 DATED	21 st March 2003
Service Request finalised	on	: 21 st March 2003	;	
Requested by (Name and address of orga	nisation)	301, BHARAT I T.J. ROAD, SE	INDUSTRIAL WREE (W),	
Description	Qty	Manufacturer	Type No.	Serial Nos.
FREQUENCY TRANSDUCER, INPUT : 45 – 55 Hz OUTPUT : 0 – 10 mA & 4 – 20 mA Accuracy: 0.2 %	01 No.	MECO	FT	030946
Test specifications		Testing as per IEC	60688 (Editio	n 2.2)
Lab Ambient				
Test Equipment used :		 Energy Meter System DMM Vibration Mac Shock Test Mac Over Voltage 7 HF Test Gener Coupling Netw 	Calibrator chine achine Test Generator rator vork	S&C/138 E&S/126 EM!/006 ENV/008 ENV/018 EMI/002 EMI/019 EMI/021 ENV/042
	Service Request finalised of Requested by (Name and address of organ Description FREQUENCY TRANSDUCER, INPUT : 45 – 55 Hz OUTPUT : 0 – 10 mA & 4 – 20 mA Accuracy: 0.2 % Test specifications Lab Ambient	Service Request finalised onRequested by (Name and address of organisation)DescriptionQtyDescriptionQtyFREQUENCY01 No.TRANSDUCER, INPUT : $45 - 55$ Hz OUTPUT : $0 - 10$ mA & $4 - 20$ mA Accuracy: 0.2 %Test specificationsLab Ambient	Service Request finalised on : 21st March 2003 Requested by : MECO INSTRU- 301, BHARAT (Name and address of organisation) : MECO INSTRU- 301, BHARAT T.J. ROAD, SE MUMBAI - 400 Description Qty Manufacturer FREQUENCY 01 No. TRANSDUCER, INPUT : 45 - 55 Hz OUTPUT : 0 - 10 mA & 4 - 20 mA Accuracy: 0.2 % Test specifications Test specifications Test Equipment used : 1) Calibration Sy 2) Energy Meter 3) System DMM 4) Vibration Mac 5) Shock Test March 6) Over Voltage 7) HF Test General 8) Coupling Netw 8) Programmable	Service Request finalised on $: 21^{st}$ March 2003Requested by (Name and address of organisation): MECO INSTRUMENTS PVT 301, BHARAT INDUSTRIAL T.J. ROAD, SEWREE (W), MUMBAI – 400 015.DescriptionQtyManufacturerType No.FREQUENCY TRANSDUCER, INPUT : 45 – 55 Hz OUTPUT : 0 – 10 mA & $4 - 20$ mA Accuracy: 0.2 %MECOTest specificationsTesting as per IEC 60688 (Edition Temperature: $(25 \pm 2)^{\circ}$ C RH: $(55 \pm 5)^{\circ}$ %Test Equipment used :1)Calibration System 2) Energy Meter Calibrator 3) System DMM 4) Vibration Machine 5) Shock Test Machine 6) Over Voltage Test Generator 7) HF Test Generator 8) Coupling Network 8) Programmable Humidity

DATE DATE PAGE PAGE PAGE PAGE Requirement O/p 1 Observation 2 Requirement O/p 1 O/p 2 O/p 2 2 Class index 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.03 % 0.01 % 0.03 % 0.01 % 0.03 % 0.01 % 0.03 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.03 % 0.03 % 0.01 % 0.03 % 0.01 % 0.03 % 0.01 % <th>CT. TESTING OF FREQUENCY TRANSDUCER DATE St Results DATE St Results DATE St Reteraction DATE Class index DATE Class index Observation Constraint Constraint Class index Opservation Constraint Opservation Constraint Class index Opservation Constraint State Opservation Constraint Opservation Opservation Constraint State Opservation Class index Opser</th> <th>CT. TESTING OF FREQUENCY TRANSDUCER DATE PAGE PAGE 9 MAY 2003 2 2 8 Reentist 7 Test Variation 8 Requirement 0 1 12 Intrinsic error 13 Input rotages 14 Intrinsic error 14.12 Intrinsic error 14.2 Intrinsic error 14.1 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.3 Intrinsic error 14.4 Intrinsic error 14.5 Intrinsic error 14.4 Intrinsic error 15.4 Variation due to 16.4 Variation due to 17.4 Intervalues 18.4 Intervalues 19.4 Intervalues 10.4 Intervalues 10.4 Intervalues 10.5 Intervalues 10.4<!--</th--><th>ART</th><th>IMENT OF I</th><th>DEPARTMENT OF INFORMATION TECHNOLOGY</th><th>ALORY (WEST) VOLOGY</th><th></th><th>kepukt nu. ektl (W)/2003 e&S 27</th><th>)/2003 E&S 27</th><th></th></th>	CT. TESTING OF FREQUENCY TRANSDUCER DATE St Results DATE St Results DATE St Reteraction DATE Class index DATE Class index Observation Constraint Constraint Class index Opservation Constraint Opservation Constraint Class index Opservation Constraint State Opservation Constraint Opservation Opservation Constraint State Opservation Class index Opser	CT. TESTING OF FREQUENCY TRANSDUCER DATE PAGE PAGE 9 MAY 2003 2 2 8 Reentist 7 Test Variation 8 Requirement 0 1 12 Intrinsic error 13 Input rotages 14 Intrinsic error 14.12 Intrinsic error 14.2 Intrinsic error 14.1 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.2 Intrinsic error 14.3 Intrinsic error 14.4 Intrinsic error 14.5 Intrinsic error 14.4 Intrinsic error 15.4 Variation due to 16.4 Variation due to 17.4 Intervalues 18.4 Intervalues 19.4 Intervalues 10.4 Intervalues 10.4 Intervalues 10.5 Intervalues 10.4 </th <th>ART</th> <th>IMENT OF I</th> <th>DEPARTMENT OF INFORMATION TECHNOLOGY</th> <th>ALORY (WEST) VOLOGY</th> <th></th> <th>kepukt nu. ektl (W)/2003 e&S 27</th> <th>)/2003 E&S 27</th> <th></th>	ART	IMENT OF I	DEPARTMENT OF INFORMATION TECHNOLOGY	ALORY (WEST) VOLOGY		kepukt nu. ektl (W)/2003 e&S 27)/2003 E&S 27	
at Results Reference Test Parameter Test Condition Requirement Observation 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Clause No. Op 1 Op 2 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Class index On 9% 0.01 % 6.2 Variation due to b) Input frequency = 51 Hz 0.05 % 0.01 % 0.01 % 6.3 Variation due to Input voltage = 110 V AC. 0.2 %) 0.01 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC. 0.03 % 0.03 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC. 100 % of class 0.06 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC. 100 % of class 0.09 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC. 100 % of class 0.09 % 0.03 % 6.5 Variation due to Input voltage = 110 V AC. 100 % of class 0.09 % 0.03 % 6.6 Variation due to Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 6.6 Variation due to Auxiliary power supply: 48 V DC 50 % of class 0.09 %	At Realits F Realits Test/Parameter Test/Parameter Test/Parameter Test/Parameter Observation Clause No. Institution of the construction in the construction in the construction in the construction in the construction is an input voltage = 110 V AC (0.2 %) 0.01 %	If Reultistic Streamster Test Condition Redirence Test/Parameter Test Condition Requirement Op 4.1 Intrinsic arror Auxuliary power supply: 48 VDC. Observation Op 4.2 Intrinsic arror Auxuliary power supply: 48 VDC. Olservation Op 6.2 Variation due to Diput frequency = 35 Hz 0.03 % 0.01 % 6.3 Nariation due to Diput frequency = 35 Hz 0.03 % 0.01 % 6.4 Variation due to Auxuliary power supply: 48 VDC 0.03 % 0.03 % 6.4 Variation due to Auxuliary power supply: 48 VDC 0.09 % 0.03 % 6.5 Variation due to Input voltage varied from 38.4 V to index 6.6 Variation due to Auxuliary power supply: 48 VDC 0.09 % 0.03 % 6.7 Variation due to Input voltage 110 VAC 0.09 % 0.03 % 6.9 Variation due to Auxuliary power supply: 48 VDC 0.09 % 0.03 % 6.9 Variation due to Auxuliary power supply: 48 VDC 0.09 % 0.03 % 6.9 Variation due to Auxuliary power supply: 48 VDC 0.00 % 0.03 % 6.9 Variation due to Auxuliary powe	EC	T: TESTING	OF FREQUENCY TRA	NSDUCER		DATE 9 MAY 2003	PAGE 2	0F 7
Reference Test/Parameter Test Condition Requirement Op 1 Op 2 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Class index 0.01 % 0.01 % 4.2 Intrinsic error Auxiliary power supply: 48 V DC. (0.2 %) 0.01 % 0.01 % 6.2 Variation due to Input frequency = 55 Hz 0.05 % 0.01 % 0.03 % 6.2 Variation due to Input frequency = 55 Hz 0.00 % 0.03 % 0.03 % 6.2 auxiliary supply Anx Voltage varied from 38.4 V to index 0.00 % 0.03 % 0.03 % 6.4 Variation due to Input frequency = 55 Hz 0.00 % 0.03 % 0.03 % 6.4 Variation due to Input voltage varied from 38.4 V to index 0.00 % 0.03 % 0.03 % 6.4 Variation due to Input requency = 55 Hz 0.00 % of class 0.03 % 0.03 % 6.4 Variation due to Input requency = 45 Hz 0.00 % of class 0.03 % 0.03 % 6.4 Variation due to	Reference Test Parameter Test Condition Requirement Observation 4.1 Intrinsic error Auxiliary power supply: 48 VDC. Class index Op 1 Observation 4.2 Intrinsic error Auxiliary power supply: 48 VDC. (0.2 %) 0.01 % 0.01 % 6.2 Variation due to b) Input frequency = 55 Hz 0.05 % 0.03 % 0.03 % 6.2 Variation due to Input voltage = 110 V AC 50 % of class 0.06 % 0.03 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 % 0.03 % 6.5 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 % 0.03 % 6.6 Variation due to Input voltage = 110 V AC 6.0 % of class 0.09 % 0.03 % 0.03 % 6.7 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 %	Reference Clause No. Test Condition Requirement Obj 1 Obj 1 Obj 2 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Class index 0p 1 0p 2 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Class index 001 % 001 % 4.2 Intrinsic error Auxiliary power supply: 48 V DC. Class index 0.01 % 0.01 % 6.2 Variation due to voltage 10 put frequency = 51 Hz 0.05 % 0.03 % 0.03 % 6.4 Variation due to voltage 10 V AC 100 % 0.01 % 0.03 % 6.5 Variation due to hout voltage 510 V AC 100 % 0.03 % 0.03 % 6.6 Variation due to hout voltage 100 V AC 100 % 0.03 % 0.03 % 6.6 Variation due to the hout voltage 100 V AC 100 % 0.03 % 0.03 % 6.6 Variation due to the hout voltage Auxiliary power supply : 48 V DC 100 % 0.03 % 0.03 % 6.9 Variation due to the hout voltage Auxiliary power supply : 48	Fest	Results						
Values No. Op 1 Op 1 Op 2 4.2 Intrinsic error Input voltage = 110 V AC (0.2 %) 0.01 % 0.01 % 6.2 Variation due to Input frequency = 55 Hz 0.05 % 0.01 % 0.01 % 6.2 Variation due to Input frequency = 55 Hz 0.01 % 0.01 % 0.01 % 6.3 Variation due to Input voltage = 110 V AC 50 % of class 0.06 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC 50 % of class 0.06 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.5 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.6 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.6 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.7 Variation due to Input voltage = 110 V AC index 0.09 % 0.03 % 6.9	Cuature Proc. Op 1 Op 1 Op 2 4.2 Intrinsic error Input voltage = 110 V AC (0.2 %) 0.01 % 0.01 % 6.2 Input frequency = 45 Hz 0.01 % 0.01 % 0.01 % 0.01 % 6.2 Variation due to Input frequency = 54 Hz 0.03 % 0.01 % 0.03 % 6.2 Variation due to Input frequency = 54 Hz 0.01 % 0.03 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC 50 % of class 0.06 % 0.03 % 6.4 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 % 6.5 Variation due to Input voltage = 110 V AC 50 % of class 0.09 % 0.03 % 6.4 Variation due to Auxiliary power supply: 48 V DC index 0.09 % 0.03 % 6.6 Variation due to the Auxiliary power supply: 48 V DC 100 % of class 0.09 % 0.03 % 6.6 Variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 7.6 Variation due to the Auxiliary power supply: 48 V DC 100 % of class 0.09 % 0.03 % 7.6 Variation due to the Auxiliary power supply: 48 V DC 100 % o	Orane FNO Untrinsic error Maxiliary power supply : 48 V DC. Class index Op1 Op2 4.2 Intrinsic error Input voltage = 110 V AC. (0.2 %) 0.05 % 0.01 % 0.01 % 6.2 Variation due to Diput frequency = 55 Hz 0.01 % 0	0	Reference	Test/Parameter	Test Condition	Requirement	Observ	ation	Remark
Input voltage100 VAC0.01 %0.01 %a) Input frequency = 55 Hzb) Input frequency = 55 Hz0.05 %0.01 %b) Input frequency = 55 Hzc) Input frequency = 55 Hz0.05 %0.01 %b) Input frequency = 55 Hzc) Input frequency = 55 Hz0.00 %0.01 %b) Input frequency = 55 Hzb) Input voltage110 V AC50 % of class0.00 %b) Nax VoltageAux Voltage varied from 38.4 V to50 % of class0.06 %0.03 %voltageAuxiliary supply48 V DC100 % of class0.09 %0.03 %Variation due toAuxiliary power supply : 48 V DCindex0.09 %0.03 %Variation due toInput voltage110 V ACindex0.09 %0.03 %Variation due to theAuxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due to theAuxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due to theAuxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due toAuxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due toAuxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due toInput voltage110 V ACindex0.01 %0.01 %Output loadOutput loadOutput load0.01 %0.01 %0.01 %Output loadOutput loadOutput load0.01 %0.01 %0.01 %	Anjour voltage = 110 V AC 0.05 % 0.01 % 0 Input frequency = 55 Hz 0.005 % 0.01 % 0 Input frequency = 55 Hz 0.01 % 0.03 % 0.03 % 0 Input frequency = 55 Hz 0.01 % 0.03 % 0.03 % 0 Narvaliary supply 55 Hz 50 % of class 0.05 % 0.03 % 0 Narvaliary supply 55 Hz 50 % of class 0.06 % 0.03 % 0 Narvaliary supply 57.6 V Aux voltage varied from 38.4 Vto index 0.05 % 0.03 % 1 Partation due to Aux voltage varied from 0 deg. C to Aux voltage = 110 V AC index 0.09 % 0.03 % 1 Partation due to Auxilary power supply : 48 V DC index 0.09 % 0.03 % 1 St deg C 10 V AC index 100 % of class 0.01 % 1 St deg C 10 V AC index 100 % 0.03 % 1 St deg C 10 V AC index 100 % 0.03 % 1 St deg C 10 V AC index 100 % 0.03 % 1 St deg C 0 St % of class 0.09 % 0.03 % 1 St deg C 0 Outper 10 V AC 100 % 0.03 % 1 St deg C 0 Outper 10 V AC 0.01 % 0.01 % <	Input frequency = 45 Hz 0.05 % 0.01 % b) Input frequency = 54 Hz 0.05 % 0.01 % b) Input frequency = 54 Hz 0.01 % 0.03 % c) Input frequency = 54 Hz 0.01 % 0.03 % variation due to Input voltage 51 Hz 0.01 % 0.03 % variation due to Input voltage 57 s V 0.01 % 0.03 % voltage 75 s V 50 % of class 0.09 % 0.03 % voltage 75 s V Index 0.09 % 0.03 % voltage 10 V Acianto due to Aux. Voltage varied from 38.4 V to index 0.09 % 0.03 % voltage 10 V Acianto due to Aux. Voltage varied from 38.4 V to index 0.09 % 0.03 % voltage 10 V Acianto due to Aux. Voltage varied from 6.8 V to index 0.09 % 0.03 % variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.01 % Variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.01 % Variation due to Input voltage 110 V AC Output 0.01 % Output O		4.2	Intrinsic error	Auxiliary power supply : 48 V DC.	Class index	0/p 1	0/p 2	Complied
6.2 Variation due to auxiliary supply -y, unput trequency = 3.5 HZ 50 % of class 0.01 % 0.01 % 6.2 Variation due to voltage Input voltage varied from 38.4 V to auxiliary supply 50 % of class 0.06 % 0.03 % 6.4 Variation due to ambient temp. Aux. Voltage varied from 38.4 V to anticiary supply 100 % of class 0.09 % 0.03 % 6.4 Variation due to ambient temp. Auxiliary power supply 48 V DC 100 % of class 0.09 % 0.03 % 6.6 Variation due to the input voltage. Auxiliary power supply 48 V DC 50 % of class 0.09 % 0.03 % 6.9 Variation due to input voltage. 132 V at 45 Hz and 55 Hz. 50 % of class 0.09 % 0.03 % 6.9 Variation due to Input voltage 110 V AC 50 % of class 0.01 % 0.03 % 6.9 Variation due to Auxiliary power supply : 48 V DC 50 % of class 0.01 % 0.03 % 6.9 Variation due to Auxiliary power supply : 48 V DC 50 % of class 0.01 % 0.03 % 7 0.01 wtotage = 110 V AC 50 % of class 0.01 % 0.01 % 7 0.01 mtotage 0.01 % 0.01 % 0.01 %	6.2 Variation due to auxiliary supply b) uppu trequency = 33 HZ 0.01 % 0.01 % 0.01 % 6.4 Variation due to nuclease 57.6 V 50 % of class 0.06 % 0.03 % 6.4 Variation due to nuclease Aux Voltage varied from 38.4 V to Aux Voltage 100 % of class 0.09 % 0.03 % 6.4 Variation due to Input voltage Auxiliary power supply: 48 V DC 100 % of class 0.09 % 0.03 % 7.5 6 Variation due to the input voltage Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 6.6 Variation due to the input voltage. Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 6.9 Variation due to Input voltage 110 V AC 50 % of class 0.01 % 0.01 % 6.9 Variation due to Auxiliary power supply: 48 V DC 50 % of class 0.01 % 0.01 % 7.1 Output load Duput voltage 110 V AC 50 % of class 0.01 % 6.9 Variation due to Auxiliary power supply: 48 V DC 50 % of class 0.01 % 7.1 Output load Output load 0.01 % 0.01 % 7.1 Output load Output load 0.01 % 0.01 % Output load 0.01	6.2 Variation due to auxiliary supply 0.01 % but voltage = 110 V AC 0.01 % but voltage = 110 V AC 0.01 % but voltage 0.01 % 0.03 % 6.4 Variation due to voltage Aux voltage varied from 33.4 V to anvitary supply 57.6 V 0.00 % 0.03 % 0.03 % 6.4 Variation due to index Auxiliary power supply: 48 V DC 100 % of class 0.09 % 0.03 % 6.6 Variation due to imput voltage 110 V AC index 0.09 % 0.03 % 7.5 Variation due to imput voltage 110 V AC index 0.09 % 0.03 % 6.6 Variation due to imput voltage 132 V at 45 Hz 50 % of class 0.09 % 0.03 % 6.9 Variation due to imput voltage 132 V at 45 Hz 50 % of class 0.01 % 0.01 % 0.9 Output load Output load Output load 0.01 % 0.01 % 0.00 tut Output load Output load 0.01 % 0.01 %				5	(0.7%)	0.05 %	0.01 % 0.05 %	
Variation due to Auxiliary power supply: 48 V DC 100 % of class 0.09 % 0.03 % ambient temp. Input voltage = 110 V AC index 0.09 % 0.03 % ambient temp. Temp. varied from 0 deg. C to 45 deg. C 0.09 % 0.03 % Variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Input voltage. Input voltage varied from 88 V to index 0.09 % 0.03 % Variation due to the Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Input voltage. 132 V at 45 Hz and 55 Hz. 50 % of class 0.09 % 0.03 % Variation due to Auxiliary power supply: 48 V DC 50 % of class 0.01 % 0.01 % Output load Output 1 Output 1 0.01 % 0.01 %	Variation due to ambient temp.Auxiliary power supply : 48 V DC100 % of class0.09 %0.03 %Input voltage = 110 V AC Temp. varied from 0 deg. C to 45 deg. CTemp. varied from 0 deg. C to 45 deg. C50 % of class0.09 %0.03 %Variation due to the input voltage.Auxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due to the input voltage.Auxiliary power supply : 48 V DC50 % of class0.09 %0.03 %Variation due to input voltage.Input voltage varied from 88 V to indexindex0.09 %0.03 %Uvariation due to input voltage.Auxiliary power supply : 48 V DC50 % of class0.01 %0.03 %Uvariation due to input voltageAuxiliary power supply : 48 V DC50 % of class0.01 %0.01 %Uput loadOutput loadDuput load110 V ACindex0.01 %0.01 %Output loadOutput load0.010 %0.01 %0.01 %0.01 %Output loadOutput load0.010 %0.01 %0.01 %Output load0.010 form.0.01 form0.01 %0.01 %	Variation due to ambient temp. Auxtilary power supply: 48 V DC 100 % of class 0.09 % 0.03 % Imput voltage = 110 V AC Temp. varied from 0 deg. C to 45 deg. C 50 % of class 0.09 % 0.03 % Variation due to the input voltage. Auxtilary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Variation due to the input voltage. Auxtilary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Variation due to the input voltage. Auxtilary power supply: 48 V DC 50 % of class 0.09 % 0.03 % Variation due to Auxtilary power supply: 48 V DC 50 % of class 0.01 % 0.01 % Output load Dutput load Output 1 0.01 % 0.01 % Output load Dutput load 0.01 % 0.01 %	-	6.2	Variation due to auxiliary supply voltage	b) Input trequency = 33 ftz Input voltage = 110 V AC Aux. Voltage varied from 38.4 V to 57.6 V	50 % of class index	0.01 %	0.01 % 0.03 %	Complied
6.6 Variation due to the Auxiliary power supply : 48 V DC 50 % of class 0.09 % 0.03 % input voltage. Input voltage varied from 88 V to index 132 V at 45 Hz and 55 Hz. 50 % of class 0.09 % 0.03 % 6.9 Variation due to hout load Auxiliary power supply : 48 V DC 50 % of class 0.01 % 0.01 % 0.01 voltage 110 V AC index index 0.01 % 0.01 %	6.6 Variation due to the input voltage. Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 6.9 Variation due to input voltage. Input voltage varied from 88 V to index index 0.09 % 0.03 % 6.9 Variation due to input voltage I 32 V at 45 Hz and 55 Hz. 50 % of class 0.01 % 0.01 voltage I 0 V AC Index Index 0.01 % 0.01 voltage 0 output load Output 1 0.01 % 0.01 voltage 0 output load 0.01 % 0.01 % 0.01 voltage 0 ohm to 500 ohm. 0.01 % 0.01 %	6.6 Variation due to the input voltage. Auxiliary power supply: 48 V DC 50 % of class 0.09 % 0.03 % 6.9 Variation due to nput voltage. I32 V at 45 Hz and 55 Hz. 50 % of class 0.09 % 0.03 % 6.9 Variation due to nput voltage Auxiliary power supply: 48 V DC 50 % of class 0.01 % 0.01 % 0.01 voltage Output load Input voltage 110 V AC index 0.01 % 0.01 voltage Output load Output load 0.01 % 0.01 % 0.01 voltage Output load Output load 0.01 %		6.4	Variation due to ambient temp.	Auxiliary power supply : 48 V DC Input voltage = 110 V AC Temp. varied from 0 deg. C to 45 deg. C	100 % of class index	% 60.0	0.03 %	Complied
Variation due to Auxiliary power supply : 48 V DC 50 % of class Variation due to Input voltage = 110 V AC 50 % of class Input voltage = 110 V AC index Output 1 0.01 % Output 2 0.01 %	Variation due to Auxiliary power supply: 48 V DC 50 % of class output load Input voltage = 110 V AC 50 % of class output load Input voltage = 110 V AC index Output 1 Output 1 0.01 % Output 2 Output load 0.01 % Output load 0.01 % 0.01 %	Variation due to Auxiliary power supply: 48 V DC 50 % of class output load Input voltage = 110 V AC 50 % of class Output 1 Output 1 Output 1 Output 1 Output 2 0.01 % Output 2 0.01 % Output 2 0.01 %		6.6	Variation due to the input voltage.	Auxiliary power supply : 48 V DC Input voltage varied from 88 V to 132 V at 45 Hz and 55 Hz.	50 % of class index	% 60.0	0.03 %	Complied
				6.9	Variation due to output load	Auxiliary power supply : 48 V DC Input voltage = 110 V AC Output 1 Output load resistance varied from 0 ohm to 1000 ohm. Output2 Output 2	50 % of class index	0.01 %	% 10.0	Complied

	OF	2		Remark	Complied		Complied		Complied		Complied		Complied			
)/2003 E&S 27	PAGE			ation	0/p 2 0.02 %		0.01 %		0.04 %		0.04 %		0.01 %	TEST LAD		1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
REPORT NO. ERTL (W)/2003 E&S 27	DATE	9 MAY 2003		Observation	0/p 1 0.02 %		0.01 %		0.03 %		0.01 %		0.0%	THOUSE A	Release	
REI				Requirement	200 % of Class	шаех	Class index		Class index		Continue to comply the	accuracy class	Class index			
TORY (WEST) OLOGY	NSDUCER			Test Condition	Auxiliary power supply : 48 V DC	I/p with 20% 3 rd harmonics	Auxiliary power supply : 48 V DC Input voltage = 110 V AC	Magnetic field of 0,4 kA/m	Auxiliary power supply : 48 V DC Input voltage = 110 V AC	Test duration: 35 min.	Auxiliary power supply : 48 V DC Input voltage = 110 V AC	Test duration: 6 h	Auxiliary power supply : 48 V DC Input voltage = 110 V AC	Wih 100 Vrms at 45 Hz to 65 Hz applied between either output terminal and earth.		
ELECTRONICS REGIONAL TEST LABORATORY (WEST) DEPARTMENT OF INFORMATION TECHNOLOGY	SUBJECT: TESTING OF FREQUENCY TRANSDUCER		:	Test/Parameter	Variation due to distortion of immut	quantities	Variation due to magnetic field of	external origin	Variation due to self heating		Variation due to continuous operation		Variation due to common mode interference		- -	
RONICS REG RTMENT OF II	CT: TESTING			Reference	6.10		6.11		6.14		6.15		6.16			
ELECT DEPAR	SUBJE			Sr.No	2.5		2.6		2.7		2.8		2.9			


E&S 27	PAGE OF	4 7	Remark	O/p 2 0.01 % Complied		Complied Complied	Complied	rved. Complied
REPORT NO. ERTL (W)/2003 E&S 27	DATE	9 MAY 2003	Observation	0.01 % 0.01 % 0.0		Complied Con	Complied Con	No breakdown observed
KEP			Requirement	Class index		Continue to comply the accuracy class after test	Continue to comply the accuracy class after test	No breakdown
TORY (WEST) OLOGY	NSDUCER		Test Condition	Auxiliary power supply : 48 V DC Input voltage = 110 V AC With 1 V rms at 45 Hz to 65 Hz applied in series with output signal		Auxiliary power supply : 48 V DC Apply 120 % of nominal upper value on aux. Supply, voltage inputs and current inputs.	 a) For voltage inputs: 200 % of the nominal value of the measured voltage applied for 1 s and repeated 10 times at 10 s interval. b) For current inputs: 20 times the nominal value of the measured current applied for 1 s and repeated 5 times at 300 s interval 	At 3 kV AC for 1 min. between a) Input & output b) Aux. & output c) Aux. & input
ELECTRONICS REGIONAL TEST LABORATORY (WEST) DEPARTMENT OF INFORMATION TECHNOLOGY	SUBJECT: TESTING OF FREQUENCY TRANSDUCER		Test/Parameter	Variation due to series mode interference	Permissive excessive inputs	Continuous excessive inputs	Excessive inputs of short duration	Voltage test,
RONICS REC	T: TESTING		Reference	6.17	6.18	6.18.1	6.18.2	6.20
ELECTF DEPAR	SUBJEC		Sr.No.	2.10	2.11	2.11.1	2.11.2	2.12

<u></u>	OF	2	Remark	 	Complied	Complied	Complied	Complied	Complied	
)/2003 E&S 27	PAGE		ttion	Output 2		-0.05 % 0.16 % 0.11 %	Complied	-0.03 % 0.05 % 0.16 %	Not discernible	
KEPUKI NU. EKIL (W)/2003 E&S 27	DATE	9 MAY 2003	Observation	Output 1		0.03 % 0.04 % 0.03 %	Complied	-0.03 % 0.06 % 0.03 %	Not discernible	
			Requirement		After completion of the test the DUT shall comply with the requirement appropriate to its class index.	Class index (0.2 %)	The variation due to the effect of disturbance shall not be twice of class index.	Class index (0.2 %)	For input circuits: 60 k For exterior surface: 25 k	
HNOLOGY	RANSDUCER	~	Test Condition		h g the ais	r)	inals of the		Current circuit loaded at 110 % for 2 h Voltage circuit loaded at 120 % for 2 h	
DEPARTMENT OF INFORMATION TECHNOLOGY	SUBJECT: TESTING OF FREQUENCY TRANSDUCER		Test/Parameter		Impulse voltage tests	Intrinsic error	High frequency disturbance test	Intrinsic error	Test for temp. rise	
DEPARTMENT OF INFORMATION TECHNO	CT: TESTING (Reference	Clause No.					6.22	
DEPAR	SUBJEC		Sr.No.		2.13	2.13.1	2.14	2.14.1	2.15	

SUBJECT: TESTING OF FREQUENCY TRANSDUCER DATE PAGE 0 Show Test Condition Test Condition Comparison 6 7 Show Test Partin Test Condition Test Condition Comparison 0 7 Show Test Partin Test Condition Test Condition Requirement Observation Remark 2.16 6.23 Vitration Test Partin Stockes 10,033 0.033 7 2.17 6.23 Stockes 0.034 0.033 0.033 7 2.17 6.23 Stockes 0.034 0.033 0.033 0.033 0.033 2.18 6.23 Stockes 0.034 0.033 0.033 0.033 0.033 0.033 2.11 4.2 Intrinsic error 10 partines 0.034 0.033 0.	ELECT	RONICS RE UTMENT OF	ELECTRONICS REGIONAL TEST LABORAT DEPARTMENT OF INFORMATION TECHNO	ELECTRONICS REGIONAL TEST LABORATORY (WEST) DEPARTMENT OF INFORMATION TECHNOLOGY	REPORT NO	REPORT NO. ERTL (W)/2003 E&S 27	13 E&S 27	
2 6 SEP 2003 6 set/Parameter Test Condition Conditioned Output I freation Test Frequ. 10 - 55 - 10Hz Output I Output I freation Test 5 systes, 1 cearewinin. Axis: Vertical Output I Output I freation Test 5 systes, 1 cearewinin. Axis: Vertical Output I Output I 5 5 systes, 1 cearewinin. Axis: Vertical Conditioned Output I 5 5 systes, 1 cearewinin. Axis: Vertical Conditioned Output I 5 5 systes, 1 cearewinin. Axis: Vertical Conditioned Output I 5 5 systes, 1 test - 5 Hz Class index Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I fination test - 5 Hz Class index Output I Output I <	SUBJE	CT: TESTING	G OF FREQUED	NCY TRANSDUCER	Ď	ATE	PAGE	OF
eol/Purameter Test Condition Requirement Othervation freation Test Freq. : 10 - 55 - 10 Hz. Amplitude: 0.15 mm. Condutioned Output freation Test 5 yoles, 1 cetroromin. Asis: Vertical Conditioned 0.03 % 0.03 % frinsic error 9) input freq = 35 Hz Cubervation. Conditioned 0.03 % 0.03 % book Test 10 input freq = 35 Hz Cubervation. 0.03 % 0.03 % 0.03 % book Test 10 input freq = 35 Hz Cubes index 0.03 % 0.03 % 0.03 % book transitioned 10 input freq = 45 Hz Cubes index 0.03 % 0.03 % 0.03 % book transitioned 10 input freq = 45 Hz 0.23 %) 0.03 % 0.03 % 0.00 % contitioned 0.01 we tapp 5 fifth 0.23 %) 0.03 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %					2 6 SEP	2003	9	7
exPlanater Test Condition Requirement Observation Thration Tiest Freq. : 10 - 55 - 10 Hz. Amplitude: 0.15 mm. Conditioned Output 1 Output 1 Output 1 5 systes, 1 octavorinin. Axis: Vertical 5 systes, 1 octavorini. Axis: Vertical Conditioned -0.03 % -0.03 % trinsic error b) input freq = 45 Hz (0.2 %) 0.00 %								
Thration Test Freq. : 10 - 55 - 10 Hz. Amplitude: 0.15 mm. Conditioned Output 5 5 cycles, 1 octavium. Axis: Vertical Conditioned 0.03 % 0.03 % frinsic error b) Input freq. = 55 Hz (0.2 %) 0.007 % 0.003 % finds 15 spices, 1 octavium. Axis: Vertical 0.013 % 0.003 % 0.003 % finds 15 spices, 1 octavium. Axis: Vertical 0.013 % 0.003 % 0.003 % finds 15 spices, 1 octavium. Axis: Vertical 0.013 % 0.003 % 0.003 % finds 15 spices, 1 octavium. Axis: Vertical 0.013 % 0.003 % 0.003 % finds 5 Hz (0.2 %) 0.03 % 0.003 % 0.003 % finds 15 Hz (0.2 %) 0.03 % 0.003 % 0.003 % finds 5 Hz (0.2 %) 0.03 % 0.003 % 0.003 % finds 5 Hz (0.2 %) 0.03 % 0.003 % 0.003 % finds for uptic 5 Hz (0.2 %) 0.03 % 0.003 % finds 6 No totak 6 No totak 0.03 % 0.003 % 0.003 % finds 6 No totak 8 N DC (0.2 %) 0.03 % 0.01 % finds 10 Hut totak	Sr.No.	Reference	Test/Parameter	Test Condition	Requirement	Observ	ation	Remark
Trinsic error and the first in the conditioned for a conditioned for the conditioned for the conditioned for the conditioned in this shocks on each sense. (2.2 %) (0.03 % (0.		Clause No.	·			Output 1	Output 2	
trinsic error a) linput freq. = 45 ft/s = 003 % = 003 % = 003 % = 0005 % =	2.16	6.23	Vibration lest	55 - 10 Hz. octave/min.		Conditioned		ł
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.16.1	4.2	Intrinsic error	a) Input freq. = 45 Hz	Class index	-0.03 %	-0.03 %	Complied
Inck Test 15g. 5 sine. 11 ms. 3 shocks on each sense. Conditioned Total 18 shocks. Total 18 shocks. turinsic error b) input freq. = 55 Hz 0.03 % 0.03 % 0.00 % c) lipput freq. = 55 Hz 0.013 % 0.03 % 0.06 % c) lipput freq. = 55 Hz 0.03 % 0.03 % 0.06 % c) lipput freq. = 55 Hz 0.03 % 0.03 % 0.06 % c) lipput freq. = 55 Hz 0.03 % 0.03 % 0.09 % c) no one other adds control of arrow address 0.03 % 0.01 % container 0.11 put freq. = 55 Hz 0.03 % 0.03 % 0.01 % container 0.11 put freq. = 55 Hz 0.03 % 0.03 % 0.03 % 0.03 % phon circuit Auxiliary power supply: 48 V DC Not exceed twice of class index 0.37 % 0.33 % 0.03 % phon freq. = 55 Hz 0.12 % Not exceed twice of class index 0.37 % 0.14 % dipple Auxiliary power supply: 48 V DC Not exceed twice of class index 0.37 % 0.14 % dipple Auxiliary power supply: 48 V DC Not exceed twice of class index 0.37 % 0.14 % dipple Auxiliary power supply: 48 V DC Not exceed twice of class index 0.37 % 0.14 %				b) Input freq = 50 Hz c) Input freq. = 55 Hz	(0.2 %)	0.07 % 0.06 %	0.03 % 0.02 %	
trinsic error a) Input freq = 45 Hz = 0.03 % = -0.03 % = 0.03 % = 0.05 % = 0.03 % = 0.05 % = 0.03 % = 0.05 % = 0.03 % = 0.05 % = 0.03 % = 0.05 % = 0.03 % = 0.05 % = 0.03 % = 0.01 % = 0.03 % = 0.00 % = 0.05 % = 0.01 \% = 0.01 \% =	2.17	6.23	Shock Test	15g, $\frac{1}{2}$ sine, 11 ms, 3 shocks on each sense. Total 18 shocks.		Conditioned		
Prop & topple Drop height: 25 mm, one drop about each of cet. Conditioned icur bottom edges. Conditioned icur bottom edges. Conditioned icur bottom edges. 0.03 % itrinsic error Auxiliary power supply: 48 V DC b) Input freq = 55 Hz 0.01 % b) Input freq = 55 Hz 0.03 % cipple Auxiliary power supply: 48 V DC Auxiliary power supply: 48 V DC Not exceed twice of class index diage Auxiliary power supply: 48 V DC Input freq = 55 Hz Not exceed twice of class index ipple Auxiliary power supply: 48 V DC Input freq = 55 Hz Input freq = 55 Hz ipple Auxiliary power supply: 48 V DC Input frequency switched from 45 to 55 Hz Interectured for output signal Input frequency switched from 45 to 55 Hz Interectured for output signal Input frequency switched from 45 to 55 Hz Interectured for output signal Input frequency switched from 45 to 55 Hz Interectured for output signal Input frequency switched from 45 to 55 Hz Interectured for output signal Input frequency switched from 45 to 55 Hz Interectured for output signal <td>2.17.1</td> <td>4.2</td> <td>Intrinsic error</td> <td>a) Input freq. = 45 Hz b) Input freq = 50 Hz c) Input freq. = 55 Hz</td> <td>Class index (0.2 %)</td> <td>-0.04 % -0.03 % 0.03 %</td> <td>-0.02 % 0.02 % 0.06 %</td> <td>Complied</td>	2.17.1	4.2	Intrinsic error	a) Input freq. = 45 Hz b) Input freq = 50 Hz c) Input freq. = 55 Hz	Class index (0.2 %)	-0.04 % -0.03 % 0.03 %	-0.02 % 0.02 % 0.06 %	Complied
trinsic error Anxiliary power supply: 48 V DC Class index -003 % -001 % -001 % 001 % 003 % 000 % 003 %	2.18	6.23	Drop & topple Test.	Drop height: 25 mm, one drop about each of four bottom edges. One topple about each of four bottom edges.		Conditioned		1
a) Input freq = 45 Hz -0.03 % -0.01 % b) Input freq = 50 Hz 0.03 % -0.01 % b) Input freq = 50 Hz 0.03 % 0.01 % b) Input freq = 55 Hz 0.03 % 0.01 % tipple Auxiliary power supply: 48 V DC - 14.71 V 14.92 V tipple Auxiliary power supply: 48 V DC - - 14.71 V 14.92 V tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Auxiliary power supply: 48 V DC Interced twice of class index 0.37 % 0.24 % tipple Input frequerey switched from 45 to 55 Hz <t< td=""><td>2.18.1</td><td>4.2</td><td>Intrinsic error</td><td>Auxiliary power supply : 48 V DC</td><td>Class index</td><td></td><td></td><td>Complied</td></t<>	2.18.1	4.2	Intrinsic error	Auxiliary power supply : 48 V DC	Class index			Complied
c) Input freq. = 55 Hz				a) Input freq. = 45 Hz	(0.2 %)	-0.03 %	-0.01 %	
Phen circuit Auxiliary power supply : 48 V DC Input freq. = 55 Hz 14.71 V 14.92 V Lipple Auxiliary power supply : 48 V DC Not exceed twice of class index 0.37 % 0.24 % Lipple Auxiliary power supply : 48 V DC Not exceed twice of class index 0.37 % 0.24 % Lipple Auxiliary power supply : 48 V DC Time required for output signal 132 ms 147 ms Lipput frequency switched from 45 to 55 Hz Inducial value shall be reported 132 ms 147 ms Lipput frequency switched from 45 to 55 Hz Addendum Released by OCC,CSC) OCC,CSC) OIC,CSC) OIC,CSC) Addendum Released by OCC,CSC) OIC,CSC) OIC,CSC) OIC,CSC) OIC,CSC)				b) input ireq = 20 Hz c) Input freq. = 55 Hz		-0.03 %	0.01 % 0.05 %	
Lipple Auxiliary power supply: 48 V DC Not exceed twice of class index 0.37 % 0.24 % Input freq. = 55 Hz Input freq. = 55 Hz Time required for output signal 132 ms 147 ms Response time Auxiliary power supply: 48 V DC Time required for output signal 132 ms 147 ms Input frequency switched from 45 to 55 Hz fiducial value shall be reported 132 ms 147 ms Input frequency switched from 45 to 55 Hz fiducial value shall be reported 100 model 100 model Input frequency switched from 45 to 55 Hz fiducial value shall be reported 100 model 100 model Input frequency switched from 45 to 55 Hz fiducial value shall be reported 100 model 100 model Input frequency switched from 45 to 55 Hz fiducial value shall be reported 100 model 100 model Input frequency switched from 45 to 55 Hz fiducial value shall be reported 100 model 100 model	2.19	5.2.3	Open circuit voltage	Auxiliary power supply : 48 V DC Input freq. = 55 Hz		14.71 V	14.92 V	
tesponse time Auxiliary power supply: 48 V DC Input voltage = 110 V AC Input frequency switched from 45 to 55 Hz Addendum Released by Addendum Released by COIC,CSC) (OIC,	2.20	5.4	Ripple	Auxiliary power supply : 48 V DC Input freq. = 55 Hz	Not exceed twice of class index	0.37 %	0.24 %	Complied
ion of Page No. 06 of 07 of Report No. ERTL (W)/2003E&S27 issued on 9 th May, 2003.	2.21	5.5	Response time	Auxiliary power supply : 48 V DC Input voltage = 110 V AC Input formerory statched from 45 to 55 Hz	Time required for output signal to reach 99 % from 0 % of fidheid when shall be served		147 ms	1
(OIC,CSC) (OIC,CSC) (OIC, CSC) (OIC,CSC) (OIC,	Addendi	ung Approved t	by		- 55			
CT COMPANY BIRL	(Head, I	L&S)		(O)	AC AND A COLOR	Ð		
	This is a	an addendum v	ersion of Page No.	. 06 of 07 of Report No. ERTL (W)/2003E&S27 issu	COMPANY STAT	COLUMNATION COLUMN		

ELECTRONICS REGIONAL TEST LABORATORY (WEST) MINISTRY OF INFORMATION TECHNOLOGY	REPORT NO. ERTL (W)/2003 E&	:S 27
SUBJECT: TESTING OF FREQUENCY TRANSDUCER	9 MAY 2003	PAGE 7	OF 7

3.0 General Remarks : Nil.

OUR ACCREDITATION STATUS

ERTL (W) set up under the STQC Directorate, Ministry of Communications & Information Technology, Govt. of India has been accreditated under number of national / international systems as follows :

SYSTEM	AREA	STATUS
IECQ (International Electro-technical Commission on Quality Assessment System for Electronic Components)	Component Testing Resistors (Fixed) Capacitors (Fixed) 	Accreditated as ITL (Independent Test Laboratory)
NABL (C), India National Accreditational Board for Test & Calibration laboratories (Calibration System)	Calibration • Electro-technical discipline • Thermal discipline • Mechanical discipline	Accreditated Calibration Laboratory
NABL(T), India National Accreditational Board for Test & Calibration laboratories (Testing System)	Electronic & Electrical Testing	Accreditated Test Laboratory
IECEE-CE-Scheme	 Mains Operated Electronic Consumer Products 	Approved as a CB test Laboratory
Other recognisation		Recognised by CSPO of State Govt., DOT, Naval Docyard, LCSO etc.